Classification of Simply-Transitive Levi Non-Degenerate Hypersurfaces in ?3

نویسندگان

چکیده

Abstract Holomorphically homogeneous Cauchy–Riemann (CR) real hypersurfaces $M^3 \subset \mathbb{C}^2$ were classified by Élie Cartan in 1932. In the next dimension, we complete classification of simply-transitive Levi non-degenerate $M^5 \mathbb{C}^3$ using a novel Lie algebraic approach independent any earlier classifications abstract algebras. Central to our is new coordinate-free formula for fundamental (complexified) quartic tensor. Our final result has unique (Levi-indefinite) non-tubular model, which demonstrate geometric relations planar equi-affine geometry.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Order Invariants of Levi Degenerate Hypersurfaces

The first part of this paper considers higher order CR invariants of three dimensional hypersurfaces of finite type. Using a full normal form we give a complete characterization of hypersurfaces with trivial local automorphism group, and analogous results for finite groups. The second part considers hypersurfaces of finite Catlin multitype, and the Kohn-Nirenberg phenomenon in higher dimensions...

متن کامل

Regularity of Cr-mappings into Levi-degenerate Hypersurfaces

We provide regularity results for CR-maps between real hypersurfaces in complex spaces of different dimension with a Levi-degenerate target. We address both the real-analytic and the smooth case. Our results allow immediate applications to the study of proper holomorphic maps between Bounded Symmetric Domains. 2010 Mathematics Subject Classification: Primary 32H40 Secondary 32H35 32V10

متن کامل

Non-degenerate graded Lie algebras with a degenerate transitive subalgebra

The property of degeneration of modular graded Lie algebras, first investigated by B. Weisfeiler, is analyzed. Transitive irreducible graded Lie algebras L = ∑ i∈Z Li, over algebraically closed fields of characteristic p > 2, with classical reductive component L0 are considered. We show that if a non-degenerate Lie algebra L contains a transitive degenerate subalgebra L′ such that dimL1 > 1, th...

متن کامل

New Normal Forms for Levi-nondegenerate Hypersurfaces

In this paper we construct a large class of new normal forms for Levi-nondegenerate real hypersurfaces in complex spaces. We adopt a general approach illustrating why these normal forms are natural and which role is played by the celebrated Chern-Moser normal form [CM74]. The latter appears in our class as the one with the ”maximum normalization” in the lowest degree. However, there are other n...

متن کامل

Levi-flat Hypersurfaces with Real Analytic Boundary

Let X be a Stein manifold of dimension at least 3. Given a compact codimension 2 real analytic submanifold M of X, that is the boundary of a compact Levi-flat hypersurface H, we study the regularity of H. Suppose that the CR singularities of M are an O(X)-convex set. For example, suppose M has only finitely many CR singularities, which is a generic condition. Then H must in fact be a real analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnab147